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Abstract

Language extensions of Fortran are being developed which permit the user to map
data structures to the individual processors of distributed memory machines. These
languages allow a programming style in which global data references are used. Current
efforts are focussed on designing a common basis for such languages, the result of which
is known as High Performance Fortran (HPF). One of the central debates in the HPF
effort revolves around the concept of templates, introduced as an abstract index space
to which data could be aligned. In this paper, we present a model for the mapping
of data which provides the functionality of High Performance Fortran distributions
without the use of templates. L. annouijced [i
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1 Introduction

Much current research activity is concentrated on providing suitable programming tools for

distributed-memory architectures. One focus is on the provision of appropriate high-level

language constructs to enable users to design programs in much the same way as they are

accustomed to on a sequential machine. Several proposals have been put forth in recent

months for a set of language extensions to achieve this [3, 4, 5, 6, 10], in particular (but not

only) for Fortran.

Recently, a coalition of researchers from industry, government labs and academia formed

the High Performance Fortran Forum to develop a standard set of extensions for Fortran

90 which would provide a portable interface to a wide variety of parallel architectures. The

forum has produced a draft proposal for a language, called High Performance Fortran (HPF),

which focuses mainly on issues of distributing data across the memories of a distributed

memory multiprocessor.

High Performance Fortran (HPF) adds directives to Fortran 90 to allow the user to

advise the compiler on the allocation of data objects to processor memories. The three basic

elements of the model are:

"* abstract processors,

"* distributions, which are mappings of objects to abstract processors,

"* alignments, which are mappings of data objects to other objects.

The distribution of an object (usually an array) specifies a mapping of the index domain

associated with the object to the index domain of a set of abstract processors. This may

be specified by the user: a) directly, by explicitly specifying suitable directives, or b)

indirectly, b3 using an alignment that relates the index domain of the array to the index

domain of another object whose distribution is known.

The HPF directives provide a way to direct the compiler to ensure that certain data

objects will reside in the same processor. The underlying motivation is that an operation

on two or more data objects is likely to be carried out much faster if they all reside in the

same processor, and, furthermore, it may be possible to carry out several such operations

concurrently if they can be performed on different processors.

Alignment can serve as a bundling mechanism: once many arrays are aligned to the same

object, then they can be distributed onto a processor arrangement with a single statement.

In general, arrays are aligned to other arrays. However, HPF has introduced the concept

of templates to be used as an alignment base. As stated in the HPF language specification [8]:



Sometimes it is desirable to consider a large index space with which several

smaller arrays are to be aligned, but not to declare any array that spans the

entire index space. HPF provides the notion of a TEMPLATE, which is like

an array whose elements have no content and therefore occupy no storage; it is
merely an abstract index space that can be distributed and with which arrays may

be aligned.

The problem with this approach is that even though it is useful in some special situations,

the concept of templates necessarily complicates the whole underlying semantic model. Since

templates are not first class objects in the language (they can occur only in directives), they

cannot be passed across procedure boundaries, and thus cannot be used to describe the
'istributions and alignments of procedure arguments. Also, as currently defined, the size

of templates has to be a specification expression and hence templates cannot be used for
describing the alignment of Fortran 90 allocatable arrays.

In this paper, we show that the HPF distribution and alignment model can be defined

in a clear and concise manner without templates, while retaining the intended functionality.
The major differences between the current HPF draft [8] and the language proposed in

this paper are as follows. The model has been simplified by:

1. Removing template directives.

2. Limiting the height of alignment trees to 1.

3. Clarifying the role of processors by establishing a language defined mapping to an

implementation-specific abstract processors arrangement.

4. Passing of arguments to procedures has been simplified by eliminating the INHERIT
attribute, matching alignments, and the TO-clause for dummy arguments.

At the same time, the language has been significantly generalized with the objective of
improving object program performance. In particular:

1. Arrays may be distributed to processor sections.

2. The set of distribution functions has been extended by including GENERAL_3LOCIK.

This allows the specification of irregular block distributions, which are important for
the support of load balancing, and can be implemented efficiently [13].

3. The concept of distribution functions has been defined in a general way so that future

language standards may easily incorporate more general mappings.
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The paper is organized as follows. In the next section we describe the model and ter-

minology underlying our proposal. The subsequent sections introduce the main language

extensions - processors, distribution directives and alignment directives. Issues involving

allocatable arrays and procedures are treated separately. We then discuss the issues arising

due to HPF templates and conclude with a discussion of related work.

2 Model

2.1 Index Domains

An index domain I of rank (dimension) it is an ordered set of subscript tuples that can be

represented by a subscript-triplet-list of length n (see Fortran 90 specification, R619). Each

element of an index domain is called an index; it represents an n-dimensional arrangement

of values. I is called a standard index domain iff the stride in each subscript triplet is 1.

Let A denote a declared data array (or processor array) that has been created. Then A

is associated with a standard index domain which we denote by IA.

2.2 Distributions

A distribution of an array maps each array element to one or more processors which become

the owners of the element and, in this capacity, store the element in their local memory.

We model distributions by mappings between the associated index domains.

Definition 1 Index Mappings

Let I,J denote two index domains. An index mapping from I to J is a total function

t: I --* P (J) - {€}, where P (J) denotes the powerset of J

Definition 2 Distributions

Let A denote an array, and R a processor array. An index mapping 6A from IA to IR is

called a distribution function for A with respect to R.

A distribution function bA - which is a mapping between index domains - induces anl

associated element-based distribution that maps elements of A to one or more abstract

processors.*

Note that scalars can easily be accommodated in our model by treating them as if they

were associated with an index domain consisting of exactly one element.

"Note that replication can be modeled as a special -ase of distribution, since every array element can be
distributed to an arbitrary (positive) number of processors.

3



2.3 Alignment

Definition 3 Let A, B denote arbitrary arrays. An index mapping B from Ia to IB i

called an alignment function for A with respect to B.

Definition 4 Construction of a distribution

If A, B, 0S, and 4: IA (pB) - {€} are given as above, then 6A can be determined as

follows: For each i E JA

R(): Uj o i) R(J

We will express this relationship below in the form

A = CONSTRUCT(a ,).

This can be verbally described as follows: if i is an index of A which is mapped to an

index j of B via the alignment function a, then A(i) and B(j) are guaranteed to reside in

the same processor under any given distribution for B.

2.4 The Alignment Relation

For the following discussion, we consider the data space A of all arrays that are accessible

in a given scope, and have been created, at a given time during the execution of a program

unit.

An alignment directive (see Section 5) establishes an alignment from an array A1 ,

the alignee, to an array A2, the alignment base. It defines an alignment function for A1

with respcct to A 2.

An HPF program must satisfy the following constraints:

1. Each array occurring as an alignment base must not be aligned to another array. For

such an array, a distribution must be specified directly.

2. Each array occurring as an alignee can be aligned with only one alignment base.

This enables us to represent A as an alignment forest, consisting of a set of alignment

trees. The nodes in the alignment forest represent arrays, and there is a directed edge from

B to A if and only if A is aligned to B. The height of alignment trees may be either I or

0. An alignment tree of height 0 is called degenerate: it consists of exactly one node dlht

represents an array which is not aligned to any other array, an(d to which Iio other array is

aligned.

• • .a l I II I



Each alignment tree T has a uniquely defined root, which is called the primary array

of T. All other nodes of T are called secondary arrays.

Let B denote a primary array. Then there is either a directive which explicitly specifies

a distribution for B or B is implicitly distributed by the compiler. Primary arrays are the

only arrays with this property.

Let A denote an arbitrary secondary array of a tree with primary array B. Then there

exists an alignment function a, describing the alignment from A to B. If 6b is the distribution
of B, the distribution of A satisfies 6A = CONSTRUCT(a, 6).

After the specification part of a unit has been completely processed, the alignment forest

can be constructed for the set of all arrays that are accessible and have already been created.

This is the initial state for the actual alignment forest associated with the processing of the
executable part of the program. The structure of the forest may change dynamically during

execution as a result of executing REDISTRIBUTE and REALIGN directives, ALLOCATE
and DEALLOCATE statements, and procedure calls.

For the details of these manipulations see Sections 4.2, 5.2, and 7. Distribution and
alignment functions are explained in Sections 4 and 5, respectively.

3 The Processors Directive

Each implementation of HPF determines uniquely an implicit abstract processor ar-

rangement, AP, which specifies a linear numbering scheme for the physical processors of

the underlying machine.
The PROCESSORS directive declares one or more processor arrangements, each of which

may be either a processor array arrangement or a conceptually scalar processor ar-

rangement.

The specification of a processor arrangement determines the name and, in the case of a

processor array arrangement, a non-empty index domain. It must appear in the specification

part of a program unit.

Each processor arrangement is mapped to AP in the same way as storage association is

defined for the Fortran 90 EQUIVALENCE statement, with abstract processors playing the

role of the storage units (see Fortran 90 specification, 5.5.1). The sharing of an abstract

processor implies the sharing of the associated physical processor.

Depending on the target architecture, data distributed to a (conceptually) scalar pro-

cessor arrangement may reside in a single control processor (if the machine has one), or

may reside in an arbitrarily chosen processor, or may be replicated over all processors. The

language does not specify a relationship between different scalar processor arrangements.
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4 Distribution Directives

The DISTRIBUTE directive specifies tile distribution (Section 2.2) of one or more arrays,

the distributees, by establishing for each distributee a mapping between its index domaiil

and the index domain of the distribution target, which is either a processor array or a

section thereof. The distribution target is specified, after the keyword TO, in a TO-clause.

The mapping between distributee and processor array can be specified either explicitly,

as a distribution format list, or as an inherited distribution. The elements in tile

distribution format list are associated with the dimensions of the distributee; each element

is one of the following:

1. BLOCK

2. GEN ERALBLOCK(restricted-expression)

3. CYCLIC[(specification-expression)]

4. 4":

The meaning of these elements will be discussed below. Inherited distributions will be

discussed in Section 7.

Examples:

!HPF$ DISTRIBUTE A(BLOCK)

!HPF$ DISTRIBUTE B(CYCLIC) TO Q(1:NOP:2)

!HPF$ DISTRIBUTE C(GENERALBLOCK(S))

!HPF$ DISTRIBUTE (BLOCK,:) :: E,F

4.1 Determining an Array Distribution

Let A denote an array of rank n which is not a dummy argument, and assume that R is

the associated distribution target (explicitly or implicitly specified). The distribution of A is

specified by a list of distribution formats. The length of this list must be n,. A distribudion1

format ":" specifies that the corresponding array dimension is not being distrilbted. The

rank of R must be n, reduced by the number of colons in the distribution format-list. The non-

colon entries in the distribution format list are matched from left to right, to the dimensions

of R. For each such entry, a distribution function is determined according to the riles defined

below. Here we assume both the array and the processor array are one-dimensional, with

index domains VA = [I : N] and IR = [1 : NP]. We will (lefie the f, nctions associated

with the distribution formats by specifying the associated distributions, which will be simply

denoted by 6.
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4.1.1 Block Distributions

The block distribution function is specified by the distribution format BLOCK; it divides

the array into contiguous blocks whose sizes are identical, except possibly for the last block,

which may be of a smaller size. More precisely, let q [Nýp]. Then:

" 6(i)= {j} for all i, 1 < i < N, wherej={[•]}.

"* The local index associated with element A(i) in processor R(j) is i - (j - 1)* q.

4.1.2 General Block Distributions

A distribution format for a general block distribution is of the form GENERALBLOCK(G),

where G is an integer array with index domain [I:M], where M > NP - 1.

A is partitioned into NP contiguous blocks. For all i, I < i < NP, G(i) specifies the upper

bound of block i. The index range associated with block 1 is [1 : G(1)]; for 1 < i < NP,

[G(i - 1) + 1 : G(i)] is the index range of block i; and [G(M - 1) + 1 : N] is the index range

of block NP.

4.1.3 Cyclic Distributions

Block-cyclic distributions are specified by the distribution format CYCLIC(k), with an ar-

gument, k > 1, of type integer. CYCLIC(k) defines contiguous segments of length k and

maps them cyclically to the processors. The distribution function is given as follows:

b(i) = {MODULO([ -], NP + 1)} for all i, 1 < i <N

Cyclic distributions are specified by the distribution format CYCLI( rhis is equivalent

to CYCLIC(l).

4.2 The REDISTRIBUTE Directive

The REDISTRIBUTE directive is syntactically similar to the DISTRIBUT•E directive but

may appear only in the execution part of a program unit. It is used for dynamically changing

the distribution of an array and may only be used for arrays that have been declared as

DYNAMIC.

If an array B is redistributed, then every array A that is aligned to B is redistributed in

such a way that the relationship expressed by the alignment function linking A to B is kept

invariant (see Section 2.4). If B is a secondary array at the time of redistribution, then the

actual alignment forest changes as follows: B is disconnected from A and made into a new

degenerate tree with primary array B.
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5 Alignment Directives

The ALIGN directive is used to distribute data objects indirect ly. by specifyinig one or more

direct alignment relationships and the associated alignment functions (see Sections 2.3 and

2.4).

Every axis of the alignee is specified as either ":" or "' or an align-dummy, which is a

scalar integer variable. If it is ":", then positions along that axis will be spread out across the

matching axis of the alignment base; if it is "', then that axis is collapsed: positions along

that axis make no difference in determining the corresponding position of the alignment basw.

(Replacing the "' with an align-dummy not used anywhere else in the directive Nouhl have

the same effect; thus this notation is a convenience only). An align-d(nmv is considered to

range over all valid index values for that dimension of the alignee.

Each element of the alignee is aligned with all corresponding positions of the aliginent

base.

5.1 Determining the Alignment Function

This section describes how an ALIGN directive specifies the alignment function associated

with the direct alignment relationship between alignee and alignment base. Let

9 A denote the alignee, and IA = [L .. , L,, : U,]

e B denote the alignment base, and B = [L' : U1,..., •L,: I

The alignment function mapping Va to the power set of IB will be denoted by a.

Assume that the directive has the form

ALIGN A(si,... , s,,) WITH B(t,,. . . ,

where

* each s, is ":", "*", or an aligv anmmy

e each tj is a base-subscript. This can be any of the following cases:

- a dummyless-expr, i.e., a scalar integer expression in which no align-dummy occurs

- a dummyuse-expr, i.e., a scalar integer expression in which exactly one align-

dummy occurs

- a subscript-triplet

8



We explain the construction of a by first applying a sequence of transformations to the

directive which eliminate ":" and "*" in the alignee, and subscript-triplets as well as """ in
the base-subscr!; !.-list. The transformations are specified as follows:

9 As- .ae that si =":" matches the subscript triplet tj = [LT : UT : ST]. Then

U, - Li + 1 < MAX(INT(UT - LT + ST)/ST, 0) must hold. The positions in axis i

of the alignee are spread out across axis j of the alignment base:

si is replaced by a new align-dummy J, and tj is replaced by the expression

(J - L,) * ST + LT. (This is analogous to array assignment).

* Assume that si ="*". Then axis i of the alignee is collapsed:

si is replaced by a new align-dummy J which occurs nowhere else.

* Assume that tj ="*". This denotes replication:

B(t,. . .,tj-l,*,tj+1,...,tin) is replaced by the set
f{B(t,,....,Itj_,,Ik, tj+,,I...,Itm) I L' < k < Uý }.

By applying these transformations until neither the alignee nor the alignment base contain

positions with either ":" or "'" we obtain:

" a reduced alignee of the form A(J 1,...,J,), where the Ji are distinct align-dummies.

The range of Jj is given by [Li : Ui].

" an alignment base set ABS, every element of which has tF e form B(yl,..., yin), where

each yj is either a dummyless-expr or a dummy-use-expr. The operators "+", "-", and
"*" may be applied to form expressions which are linear in the align-dummy. Since

linear expressions cannot handle some frequently occurring cases, such as truncation at

either end of the alignment, we also allow the intrinsic functions MAX, MIN, LBOUND,

UBOUND, and SIZE to be used in alignment functions. Each J, may occur in at most

one yj (this excludes the possibility to specify skew alignments).

The basic rules for determining a are now as follows:

1. Select an arbitrary tuple j = (i•,.. ,j,,), where each j. is a value in the range of Jj,

and substitute ji for each occurrence of J, in ABS.

2. Evaluate all expressions in the modified set ABS; this evaluation is performed modulo

the extent of the associated dimension of the alignment base: the value y associated

with dimension j is replaced by • = MIN(U•,y).

9



Example:

iEAL A(1:N), D(1:N,1:M)

!HPF$ ALIGN A(:) WITH D(:,*)

aligns a copy of A with every coluhmn of D. The reduced alignee has t li' form A(.1). where tht

range of J is [1 N 1]. For the alignment base set we obtain: A B.S={ )(J. A-) I 1 ý k <_ . }.

Ilence, a(J) (J, k-) I I < k _< MI for each .1 E [I : .].

Example':

REAL B(I:N,I:M), E(1:N)

!HPF$ ALIGN B(:,*) WITH E(:)

lie, the reduced alignee has the form B(J,,J.2 ). where the range of .11 is [1 I I

the range of J-2 is [I : MI. For the alignment base set we oitamn:..1BS={jL(Jj )}. Ths.

n(J., J2)= {(J,)} for each J, E [1: N] and J2 E [1 : M].

5.2 The REALIGN Directive

The REALIGN directive is syntactically similar to the ALIGN directive but may appear wnly

in the execution-part of a program unit. It is used for dynamically changing the alignment

of an array and again may only be used for arrays that have been declared as DYNAMIC.

Assume that A is the alignee, B the base array, with distribution 6'. and n the alignment

function determined by the REALIGN directive. Then the actual alignment forest is mnodified

as described by the steps below:

1. If A is a primary array at the root of a non-degenerate tree immediately I)efore ex-

ecution of the REALIGN directive, then all secondary arrays associated with A are

disconnected from A and made into primary arrays of degenerate trees with their

current distribution.

If A is a secondary array with associated primary array B', then A is disconnected

from B'. (Note that B' = B is possible).

2. A is made a new secondary array of B.

3. The distribution of A is determined as 6b = CONSTRUCT(a, 0)

10



6 Allocatable Arrays

Distribution and alignment for variables with the ALLOCATABLE attribute may be speci-

fied using DISTRIBUTE or ALIGN directives. These directives may occur in tile specification-

part of a program unit just as for ether arrays: the associated attributes are propagated

to each associated ALLOCATE statement. Such variables may also be used in REDIS-

TRIBUTE and REALIGN directives.

In the following example, distributions are specified for the allocatable arrays A, C and

D which are valid for each allocation instance. When C is allocated in the instance shown,

it is given a cyclic distribution in the executable REDISTRIBUTE directive. At the time

ALLOCATE is applied to an array B, the array is created according to the alignment given

in the executable REALIGN statement. The actual alignment forest is modified by entering

B as a new element in the position determined by the alignment relationships involving B.

At the time DEALLOCATE is applied to B, the array is removed from the alignment forest

and each array A directly aligned to B is made into a new tree with primary A. Note that a

local array which is not declared ALLOCATABLE cannot be aligned in the specification-part

of a program unit to an allocatable array.

Example:

REAL,ALLOCATABLE(:,:) :: A,B

REAL,ALLOCATABLE(:) :: C,D

!HPF$ PROCESSORS PR(32)

!HPF$ DISTRIBUTE A(CYCLIC,BLOCK)

!HPF$ DISTRIBUTE(BLOCK) :: C,D

!HPF$ DYNAMIC B,C

READ 6,M,N

ALLOCATE (A (N*M ,N*M))

ALLOCATE (B (N,N))

!HPF$ REALIGN B(:,:) WITH A(M::M,1::M)

ALLOCATE(C(10000), D(10000))

!HPF$ REDISTRIBUTE C(CYCLIC) TO PR
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7 Procedures

The distribution of dummy arguments can be specified as shown below; it can also be
specified by giving an alignment to another dummy argument or a local data object in the
usual way. Further, a local data object may be aligned to a dummy argument.

The alignment tree, as defined in Section 2.4, is local to a procedure. Thus, an array
which is the actual argument of a procedure call is not connected with it- alignment tree in

the calling unit during execution of the called procedure.
If a dummy argument is redistributed or realigned during execution of the procedure,

then the original distribution must be restored on procedure exit.
The distribution of a dummy argument A can be specified in four different ways:

1. explicitly by providing a distribution specification of the form:

DISTRIBUTE A d [TO r]

where dis a parenthesized distribution format-list, and r is the distribution target. Here,
the distribution of the actual argument is changed, if necessary, to the distribution
determined by the specification (see Section 4.1). If necessary, the distribution of A
before the call has to be restored upon exit from the procedure.

2. by inheritance, syntactically expressed by:

DISTRIBUTE A *

In this case, the distribution of the actual argument is transferred into the procedure

and inherited by A.

3. by inheritance matching, syntactically expressed by:

DISTRIBUTE A * d [TO r)

A specification of this form indicates that the distribution of the actual argument is
transferred into the procedure and inherited by A. However, if this distribution does
not match the above specification, then the program is not HPF-conforming.

If this distribution attribute of the dummy is known within the calling routine (through
the use of interface blocks, for example), then the language processor will arrange for
remapping the actual argument to the specified distribution (and mapping it back on
return from the subprogram, if necessary). If the distribution attribute of the dummy
is not made available when the caller is compiled, the onus is on the programmer to
arrange for proper distribution of the actual argument.

12



4. implicitly: No explicit distribution is specified (directly or indirectly). In this case,

the compiler provides an implicit distribution specification.

8 The Template Directive in High Performance For-
tran

In the above sections, we have presented a model for mapping of data to processor memories

without using templates. We claim that the HPF template directives are limited in their

applicability and give rise to serious problems in the specification of the language, without

adding any significant functionality.

Template directives, which may occur only in the specification part of a (sub)program,

result in the creation of a template. Although the language definition states that "templates

are just abstract index spaces", it postulates in other places that distinct definitions of

templates in the same or different scopes are to be considered as different, independent

of their associated index domain. As a consequence, each template created in a program

execution must be interpreted as a tagged index domain.

The discussion in the rest of this section does not include the so-called "natural templates"

of HPF: they represent the index domain associated with an array and are thus implicitly

part of our proposal. In fact, our claim could be rephrased as saying that "natural templates"

are sufficient to describe all features related to distribution and alignment.

8.1 The Usefulness of Templates

Templates have been perceived to have two separate uses within the language. We discuss

each of these briefly.

8.1.1 Alignment of Staggered Grids

The first use of templates is to enable the specification of alignment between arrays where

there is no appropriate common index domain: this can occur whenever two or more arrays

are each associated with different parts of a physical grid which do not completely overlap.

Before we discuss the general case, we consider the example posted on the HPFF Distri-

bution mailing list by C. A. Thole:
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REAL U(O:N,I:N), V(1:N,O:N), P(I:N,I:N)

!HPF$ TEMPLATE T(0:2*N,0:2*N)

!HPF$ ALIGN P(I,J) WITH T(2*I-1,2*J-1)

!HPF$ ALIGN U(I,J) WITH T(2*I,2*J-1)

!HPF$ ALIGN V(I,J) WITH T(2*I-1,2*J)

P=U(O:N-1, :)+U(1:N, :)+V(: ,O:N-I)+V(: ,I:N)

For the above code, the claim was made that:

1. Only a template with a larger index domain than any of the arrays involved represents

the nature of the physical grid structure correctly.

2. Therefore the template T is required to specify the relationship between the data objects

precisely: in particular, it is supposed to express the fact that P(IJ) is a neighbor of

U(I,J) and U(I-1,J), but not of U(I+1,J), and similarly for P and V.

3. The actual distribution of the template (which is deliberately omitted) is irrelevant and

will be chosen in a machine-dependent manner.

Now, note that whenever two data objects in HPF are aligned with the same element

of a template, then the language guarantees that these objects will be mapped to the same

physical processor. But in the above example, all arrays are aligned with disjoint elements

of the template. As a consequence, only the distribution of the template decides the actual,

physical neighborhood relation. For example, the distribution

!HPF$ DISTRIBUTE(CYCLIC,CYCLIC)::T

results in the worst possible effect, viz. different processor allocations for any two neighbors.

While an alignment relation between arrays in a program's data space is a relatively

natural concept, the template-based code above does not establish one. Hence, this example

is misleading at best, and would seem to point out a danger associated with the template

concept rather than a use for it.

However, the user will certainly desire to specify a collocation of the arrays in the above

code or similar codes, which can be accomplished by declaring a template of size (N+ 1,N + 1).

It is indeed not possible to correctly specify an HPF alignment (without a template) in this

situation. Our extension of the HPF alignment directive (which allows restricted usage of

MAX and MIN), will suffice to permit explicit alignment directives for many cases which

14



occur in practice, including this one. Otherwise, the distributions must be specified explic-

itly. Given a suitable definition of the block distribution, one way to perform the required

distributions is the following:t

REAL U(O:N,I:N), V(1:N,O:N), P(1:N,1:N)

!HPF$ DISTRIBUTE (BLOCK,BLOCK):: U,V,P

P=U(O:N-I, :)+U(1:N, :)+V(: ,O:N-1)+V(: ,l:N)

The language proposal contained in this paper offers a much more general solution, by

providing a generalized form of block distribution.

8.1.2 Passing Array Sections to Subroutines

The second perceived use for a template directive was to permit the explicit declaration of

mappings of array sections in subroutines:

REAL A(1000)

!HPF$ DISTRIBUTE A (CYCLIC(3))

CALL SUB(A(2:996:2))

SUBROUTINE SUB(X)

REAL X(:) !X inherits its distribution

We assume that the dummy argument in subroutine SUB inherits its distribution from)

the actual argument.

The question raised here is:

how can the mapping of X be declared in SUB if one wants to specify it explicitly?

Now one will, in general, not want to explicitly specify such a distribution: the relatively

high cost associated with data movement on the current generation of parallel computers

means that a subroutine will usually be written so that it is invoked with distributed ar-

guments and the dummy arguments will indeed inherit the distribution from the actual

argument as above. However, just as we write one subroutine to handle arrays of differ-

ent sizes, so one expects such a subroutine to accept arrays with (lifferent distril),tions. In

tifere the Vienna Fortran definition of BLOCK is assumed. With the [IPF definition, this will cause a
problem if and only if the number of processors divides N exactly.
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those cases where a subroutine is important enough to warrant a specific redistribution of
its arguments, or if this should be necessary for some reason, then the language provides the

constructs required to prescribe the mappings.

Templates were seen as a solution to the problem of providing distributions such as that

of X above explicitly, should it be deemed necessary:

SUBROUTINE SUB(X)

!HPF$ TEMPLATE T(1000)

!HPF$ ALIGN X(I) WITH T(2*I)

!HPF$ DISTRIBUTE T (CYCLIC(3))

The template does help to specify this distribution in the example, but at the above-

mentioned cost of a loss of generality for the entire subroutine. Note, further, that the same

effect can be achieved by passing the entire array A to the subroutine and either using the

array section explicitly or, if it is passed as a separate argument, repeating the alignment of

the argument as above:

SUBROUTINE SUB (A, X)

!HPF$ REAL A(1000)

!HPF$ ALIGN X(I) WITH A(2*I)

!HPF$ DISTRIBUTE A *(CYCLIC(3))

(The asterisk indicates that the distribution of A is inherited). But recall that if there is

another call site for this subroutine with a different actual argument for X, then neither of

these solutions will be of any use. Instead, inquiry functions must be used to determine the

properties of alignments and/or distributions passed into the subroutine.

The current definition of HPF further attempts to facilitate the manipulation of the dis-

tributions of sections of arrays passed to subroutines by introducing the INHERIT directive,

which further removes the need for explicit use of templates in this situation (albeit at the
cost of introducing a host of new syntactic and semantic difficulties).

The main reason for this problem is that the current HPF language specification has an

unfortunate shortcoming: HPF cannot (in contrast to, for example, Kali or Vienna Fortran,

which include the concept of user-defined distribution functions), describe explicitly every

distribution that it can actually generate.

8.2 Language Problems with Templates

We now reiterate the two major problems caused by templates in the HPF language defi-

nition. Note that templates are not first-class objects of the language: in particular, tern-
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plates cannot be defined as being ALLOCATABLE. Furthermore, they cannot be passed

as arguments to subroutines.

I. Templates cannot handle allocatable arrays:

While the shape of templates is determined at entry to a program unit and cannot be

changed afterwards, an allocatable array may be subject to multiple ALLOCATE and
DEALLOCATE statements, where the extents of the dimensions associated with each

instance may depend on run-time and input values. There is no way in which HPF
can establish a direct relationship between the shape of an instance of an allocatable

array, and the shape of an associated template.

Methods to avoid this dilemma would include the definition of allocatable templates,

or of infinite templates (neither of which are a serious alternative).

2. Templates cannot be passed across procedure boundaries:

A data object whose distribution is described by a template may be passed to a sub-
program in such a way that the dummy inherits the distribution. If we need to describe
the distribution of the dummy argument, then we must be able to refer to the template
of the actual (see above example). In HPF this would require the passing of templates

to the subprogram as well. The INHERIT option for dummy arguments in the cur-
rent HPF definition tries to achieve exactly that, introducing an element of maximum

surprise for the user. The above example could be written as follows:

REAL A(1000)

!HPF$ DISTRIBUTE A (CYCLIC(3))

CALL SUB(A(2:996:2))

SUBROUTINE SUB(X)

REAL X(:)

!HPF$ INHERIT::X

!HPF$ DISTRIBUTE X *(CYCLIC(3))

The idea here is that the distribution specified for X is not the distribution of tfli

dummy argument, i.e., the distribution of the array section A(2:996:2), but that of the

array associated with the actual argument.
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In contrast, the distributions defined in the language proposal of this paper (as well as
in Vienna Fortran) are considered to be an attribute of an array, and they are bandled

that way as well. Even in the case of inherited distributions which cannot be explicitly

specified, inquiry functions can be used to determine every aspect of the distribution

passed into the procedure.

9 Related Work

Many of the concepts and constructs used in the above language proposal, and in the HPF
specification, are not new. Processor arrays and the distribution of data to them were

first used for distributed memory machines in the Kali programming language [9]. They

were further refined in the Vienna Fortran language, where processor arrays could also bt

reshaped, now expressed by means of the HPF VIEW attribute. A major difference in the

handling of processor arrays is, however, that Vienna Fortran supports the mapping of data
to subsets of processor arrays and provides a canonical mapping of processor arrays to a

linear processor array, to facilitate the portability of code.

The Vienna Fortran language [1, 3, 121 is based both upon Kali and upon experience

gained with the SUPERB parallelization system ([7, 11, 13]); it provides the user with a

wide range of facilities for mapping data structures to processors, including those proposed

in this paper and user-defined distributions. Vienna Fortran was the first language in which

the issues of distribution handling at subroutine boundaries were investigated in depth. It

introduced the concept of inheriting and of enforcing distributions and provided an attribute
to enable the user to make assertions about the distributions of actual arguments. This

language was also the first to make the distinction between static and dynamic distributions.
Among other things, the mapping of data to subsets of processors and the inheritance

of distributions have been implemented within the framework of the Vienna Fortran Com-

pilation System. Two variants of the general block distribution used in this paper, but not

included in HPF, have also been implemented.

The programming language Fortran D [6] proposes a Fortran language extension in which

the programmer specifies the distribution of data by aligning each array to a decomposition,

which corresponds to a template, and then specifying a distribution of the decomposition

to a virtual machine. These are executable statements, and array distributions are dynamic

only.

The Yale Extensions [4] specify the distribution of arrays in three stages: alignment,

partition and a physical map. Because all these stages are modeled as bijective functions

between index domains, data replication is not possible. By restrict;'• tbY scope ,f layout
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directives to phases, a block structure is imposed on Fortran 90.

Cray Research Inc. has announced a set of language extensions to Cray Fortran (cf77) [10]

which enable the user to specify the distribution of data and work. They provide intrinsics for

data distribution and permit redistribution at subroutine boundaries. Further, they permit

the user to structure the executing processors by giving them a shape and weighting the

dimensions. Several methods for distributing iterations of loops are provided.

10 Conclusions

An approach which substantially reduces the cost of developing codes for distributed memory

parallel machines is to provide a set of extensions for sequential languages (in particular,

Fortran and C). These extensions should be portable across a wide range of architectures

and should suffice for a wide variety of algorithms. The methods by which the user may

distribute data to the processors are the central feature of such a language, and should be as

natural and as flexible as possible. In this paper, we have presented in detail such a model

for distribution and alignment of data. This model is both simpler and more general than

'he iirrr-nt High Performance Fortran model. In particular, it does not require a template

directive and has simplified the passing of distributed arguments to subroutines. On the

other hand, the concept of distribution functions has been generalized. A full description of

the model described in this paper can be found in [2].
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